πŸ“„ WikitqΒΆ

This WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables… See the full description on the dataset page: https://huggingface.co/datasets/wikitablequestions

Tags: annotations_creators:crowdsourced, arxiv:1508.00305, flags:['table-question-answering'], language:en, language_creators:found, license:cc-by-4.0, multilinguality:monolingual, region:us, size_categories:10K<n<100K, source_datasets:original, task_categories:question-answering

cards.wikitq

type: TaskCard
loader: 
  type: LoadHF
  path: wikitablequestions
  data_classification_policy: 
    - public
  num_proc: 10
preprocess_steps: 
  - type: Set
    fields: 
      context_type: table
  - type: Copy
    field: table
    to_field: context
task: tasks.qa.with_context.extractive[metrics=[metrics.f1_strings, metrics.unsorted_list_exact_match]]
templates: 
  - type: MultiReferenceTemplate
    input_format: "Based on this {context_type}: {context}\nAnswer the question: {question}"
    references_field: answers
    postprocessors: 
      - processors.str_to_float_format
[source]

Explanation about TaskCardΒΆ

TaskCard delineates the phases in transforming the source dataset into model input, and specifies the metrics for evaluation of model output.

Attributes:

loader: specifies the source address and the loading operator that can access that source and transform it into a unitxt multistream.

preprocess_steps: list of unitxt operators to process the data source into model input.

task: specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.

templates: format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.

Explanation about LoadHFΒΆ

Loads datasets from the HuggingFace Hub.

It supports loading with or without streaming, and it can filter datasets upon loading.

Args:

path: The path or identifier of the dataset on the HuggingFace Hub. name: An optional dataset name. data_dir: Optional directory to store downloaded data. split: Optional specification of which split to load. data_files: Optional specification of particular data files to load. revision: Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version. streaming: Bool indicating if streaming should be used. filtering_lambda: A lambda function for filtering the data after loading. num_proc: Optional integer to specify the number of processes to use for parallel dataset loading.

Example:

Loading glue’s mrpc dataset

load_hf = LoadHF(path='glue', name='mrpc')

Explanation about SetΒΆ

Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them.

Args:
fields (Dict[str, object]): The fields to add to each instance.

Use β€˜/’ to access inner fields

use_deepcopy (bool) : Deep copy the input value to avoid later modifications

Examples:

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to all streams Set(fields={β€œclasses”: [β€œpositive”,”negatives”]})

# Add a β€˜start’ field under the β€˜span’ field with a value of 0 to all streams Set(fields={β€œspan/start”: 0}

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to β€˜train’ stream Set(fields={β€œclasses”: [β€œpositive”,”negatives”], apply_to_stream=[β€œtrain”]})

# Add a β€˜classes’ field on a given list, prevent modification of original list # from changing the instance. Set(fields={β€œclasses”: alist}), use_deepcopy=True) # if now alist is modified, still the instances remain intact.

Explanation about CopyΒΆ

Copies values from specified fields to specified fields.

Args (of parent class):

field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields.

Examples:

An input instance {β€œa”: 2, β€œb”: 3}, when processed by Copy(field_to_field={β€œa”: β€œb”} would yield {β€œa”: 2, β€œb”: 2}, and when processed by Copy(field_to_field={β€œa”: β€œc”} would yield {β€œa”: 2, β€œb”: 3, β€œc”: 2}

with field names containing / , we can also copy inside the field: Copy(field=”a/0”,to_field=”a”) would process instance {β€œa”: [1, 3]} into {β€œa”: 1}

References: metrics.unsorted_list_exact_match, tasks.qa.with_context.extractive, processors.str_to_float_format, metrics.f1_strings

Read more about catalog usage here.