πŸ“„ Tldr Document Filtered To 10000 CharsΒΆ

This corpus contains preprocessed posts from the Reddit dataset. The dataset consists of 3,848,330 posts with an average length of 270 words for content, and 28 words for the summary. Features includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id. Content is used as document and summary is used as summary.

Tags: annotations_creators:no-annotation, flags:['reddit-posts-summarization'], language:en, language_creators:crowdsourced, license:cc-by-4.0, multilinguality:monolingual, region:us, size_categories:1M<n<10M, source_datasets:original, task_categories:summarization

cards.tldr_document_filtered_to_10000_chars

type: TaskCard
loader: 
  type: LoadHF
  path: webis/tldr-17
  streaming: True
preprocess_steps: 
  - type: SplitRandomMix
    mix: 
      train: train[70%]
      validation: train[15%]
      test: train[15%]
  - type: Rename
    field_to_field: 
      content: document
  - type: Set
    fields: 
      document_type: document
  - type: Wrap
    field: summary
    inside: list
    to_field: summaries
  - type: FilterByExpression
    expression: len(document) <= 10000
task: tasks.summarization.abstractive
templates: templates.summarization.abstractive.all
[source]

Explanation about TaskCardΒΆ

TaskCard delineates the phases in transforming the source dataset into model input, and specifies the metrics for evaluation of model output.

Attributes:

loader: specifies the source address and the loading operator that can access that source and transform it into a unitxt multistream.

preprocess_steps: list of unitxt operators to process the data source into model input.

task: specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.

templates: format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.

Explanation about SplitRandomMixΒΆ

Splits a multistream into new streams (splits), whose names, source input stream, and amount of instances, are specified by arg β€˜mix’.

The keys of arg β€˜mix’, are the names of the new streams, the values are of the form: β€˜name-of-source-stream[percentage-of-source-stream]’ Each input instance, of any input stream, is selected exactly once for inclusion in any of the output streams.

Examples: When processing a multistream made of two streams whose names are β€˜train’ and β€˜test’, by SplitRandomMix(mix = { β€œtrain”: β€œtrain[99%]”, β€œvalidation”: β€œtrain[1%]”, β€œtest”: β€œtest” }) the output is a multistream, whose three streams are named β€˜train’, β€˜validation’, and β€˜test’. Output stream β€˜train’ is made of randomly selected 99% of the instances of input stream β€˜train’, output stream β€˜validation’ is made of the remaining 1% instances of input β€˜train’, and output stream β€˜test’ is made of the whole of input stream β€˜test’.

When processing the above input multistream by SplitRandomMix(mix = { β€œtrain”: β€œtrain[50%]+test[0.1]”, β€œvalidation”: β€œtrain[50%]+test[0.2]”, β€œtest”: β€œtest[0.7]” }) the output is a multistream, whose three streams are named β€˜train’, β€˜validation’, and β€˜test’. Output stream β€˜train’ is made of randomly selected 50% of the instances of input stream β€˜train’ + randomly selected 0.1 (i.e., 10%) of the instances of input stream β€˜test’. Output stream β€˜validation’ is made of the remaining 50% instances of input β€˜train’+ randomly selected 0.2 (i.e., 20%) of the original instances of input β€˜test’, that were not selected for output β€˜train’, and output stream β€˜test’ is made of the remaining instances of input β€˜test’.

Explanation about FilterByExpressionΒΆ

Filters a stream, yielding only instances which fulfil a condition specified as a string to be python’s eval-uated.

Raises an error if a field participating in the specified condition is missing from the instance

Args:

expression (str): a condition over fields of the instance, to be processed by python’s eval() imports_list (List[str]): names of imports needed for the eval of the query (e.g. β€˜re’, β€˜json’) error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True.

Examples:

FilterByExpression(expression = β€œa > 4”) will yield only instances where β€œa”>4 FilterByExpression(expression = β€œa <= 4 and b > 5”) will yield only instances where the value of field β€œa” is not exceeding 4 and in field β€œb” – greater than 5 FilterByExpression(expression = β€œa in [4, 8]”) will yield only instances where β€œa” is 4 or 8 FilterByExpression(expression = β€œa not in [4, 8]”) will yield only instances where β€œa” is neither 4 nor 8 FilterByExpression(expression = β€œa[β€˜b’] not in [4, 8]”) will yield only instances where β€œa” is a dict in which key β€˜b’ is mapped to a value that is neither 4 nor 8

Explanation about LoadHFΒΆ

Loads datasets from the HuggingFace Hub.

It supports loading with or without streaming, and it can filter datasets upon loading.

Args:

path: The path or identifier of the dataset on the HuggingFace Hub. name: An optional dataset name. data_dir: Optional directory to store downloaded data. split: Optional specification of which split to load. data_files: Optional specification of particular data files to load. revision: Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version. streaming: Bool indicating if streaming should be used. filtering_lambda: A lambda function for filtering the data after loading. num_proc: Optional integer to specify the number of processes to use for parallel dataset loading.

Example:

Loading glue’s mrpc dataset

load_hf = LoadHF(path='glue', name='mrpc')

Explanation about SetΒΆ

Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them.

Args:
fields (Dict[str, object]): The fields to add to each instance.

Use β€˜/’ to access inner fields

use_deepcopy (bool) : Deep copy the input value to avoid later modifications

Examples:

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to all streams Set(fields={β€œclasses”: [β€œpositive”,”negatives”]})

# Add a β€˜start’ field under the β€˜span’ field with a value of 0 to all streams Set(fields={β€œspan/start”: 0}

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to β€˜train’ stream Set(fields={β€œclasses”: [β€œpositive”,”negatives”], apply_to_stream=[β€œtrain”]})

# Add a β€˜classes’ field on a given list, prevent modification of original list # from changing the instance. Set(fields={β€œclasses”: alist}), use_deepcopy=True) # if now alist is modified, still the instances remain intact.

Explanation about RenameΒΆ

Renames fields.

Move value from one field to another, potentially, if field name contains a /, from one branch into another. Remove the from field, potentially part of it in case of / in from_field.

Examples:

Rename(field_to_field={β€œb”: β€œc”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: 2}, {β€œa”: 2, β€œc”: 3}]

Rename(field_to_field={β€œb”: β€œc/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: {β€œd”: 2}}, {β€œa”: 2, β€œc”: {β€œd”: 3}}]

Rename(field_to_field={β€œb”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œb”: {β€œd”: 2}}, {β€œa”: 2, β€œb”: {β€œd”: 3}}]

Rename(field_to_field={β€œb/c/e”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: {β€œc”: {β€œe”: 2, β€œf”: 20}}}] to [{β€œa”: 1, β€œb”: {β€œc”: {β€œf”: 20}, β€œd”: 2}}]

References: templates.summarization.abstractive.all, tasks.summarization.abstractive

Read more about catalog usage here.