πŸ“„ Seed BenchΒΆ

SEED-Bench-1 consists of 19K multiple-choice questions with accurate human annotations, covering 12 evaluation dimensions including both the spatial and temporal understanding.

Tags:

cards.seed_bench

type: TaskCard
loader: 
  type: LoadHF
  path: lmms-lab/SEED-Bench
preprocess_steps: 
  - type: ToImage
    field: image
    to_field: context
    process_every_value: True
  - type: ToRGB
    field: context
    process_every_value: True
  - type: ListFieldValues
    fields: 
      - choice_a
      - choice_b
      - choice_c
      - choice_d
    to_field: choices
  - type: Set
    fields: 
      context_type: video
  - type: MapValues
    mapping: 
      A: 0
      B: 1
      C: 2
      D: 3
    field: answer
task: tasks.qa.multiple_choice.with_context
templates: templates.qa.multiple_choice.with_context.no_intro.all
[source]

Explanation about TaskCardΒΆ

TaskCard delineates the phases in transforming the source dataset into model input, and specifies the metrics for evaluation of model output.

Attributes:

loader: specifies the source address and the loading operator that can access that source and transform it into a unitxt multistream.

preprocess_steps: list of unitxt operators to process the data source into model input.

task: specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.

templates: format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.

Explanation about LoadHFΒΆ

Loads datasets from the HuggingFace Hub.

It supports loading with or without streaming, and it can filter datasets upon loading.

Args:

path: The path or identifier of the dataset on the HuggingFace Hub. name: An optional dataset name. data_dir: Optional directory to store downloaded data. split: Optional specification of which split to load. data_files: Optional specification of particular data files to load. revision: Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version. streaming: Bool indicating if streaming should be used. filtering_lambda: A lambda function for filtering the data after loading. num_proc: Optional integer to specify the number of processes to use for parallel dataset loading.

Example:

Loading glue’s mrpc dataset

load_hf = LoadHF(path='glue', name='mrpc')

Explanation about SetΒΆ

Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them.

Args:
fields (Dict[str, object]): The fields to add to each instance.

Use β€˜/’ to access inner fields

use_deepcopy (bool) : Deep copy the input value to avoid later modifications

Examples:

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to all streams Set(fields={β€œclasses”: [β€œpositive”,”negatives”]})

# Add a β€˜start’ field under the β€˜span’ field with a value of 0 to all streams Set(fields={β€œspan/start”: 0}

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to β€˜train’ stream Set(fields={β€œclasses”: [β€œpositive”,”negatives”], apply_to_stream=[β€œtrain”]})

# Add a β€˜classes’ field on a given list, prevent modification of original list # from changing the instance. Set(fields={β€œclasses”: alist}), use_deepcopy=True) # if now alist is modified, still the instances remain intact.

Explanation about ListFieldValuesΒΆ

Concatenates values of multiple fields into a list, and assigns it to a new field.

References: templates.qa.multiple_choice.with_context.no_intro.all, tasks.qa.multiple_choice.with_context

Read more about catalog usage here.