πŸ“„ TablebenchΒΆ

This TableBench dataset is a Comprehensive and Complex Benchmark for Table Question Answering. For more details, refer to https://tablebench.github.io/

Tags: modality:table, urls:{'arxiv': 'https://www.arxiv.org/pdf/2408.09174'}, languages:['english']

cards.tablebench

type: TaskCard
loader: 
  type: LoadHF
  path: Multilingual-Multimodal-NLP/TableBench
  data_classification_policy: 
    - public
preprocess_steps: 
  - type: FilterByCondition
    values: 
      instruction_type: DP
    condition: eq
  - type: Apply
    function: json.loads
    to_field: table
    _argv: 
      - table
  - type: Rename
    field_to_field: 
      table/columns: table/header
      table/data: table/rows
  - type: Set
    fields: 
      context_type: Table
  - type: Rename
    field_to_field: 
      table: context
      answer: answers
task: 
  type: Task
  input_fields: 
    context: Table
    context_type: str
    question: str
    answer_formatter: str
  reference_fields: 
    answers: str
  prediction_type: str
  metrics: 
    - metrics.rouge
templates: 
  - type: InputOutputTemplate
    input_format: "You are a table analyst. Your task is to answer questions based on the table content. {answer_formatter} \n{context_type}: {context} \nQuestion: {question}"
    target_prefix: Final Answer: 
    output_format: {answers}
    postprocessors: 
      - processors.lower_case
      - processors.remove_punctuations
      - processors.remove_articles
      - processors.fix_whitespace
[source]

Explanation about TaskCardΒΆ

TaskCard delineates the phases in transforming the source dataset into model input, and specifies the metrics for evaluation of model output.

Attributes:

loader: specifies the source address and the loading operator that can access that source and transform it into a unitxt multistream.

preprocess_steps: list of unitxt operators to process the data source into model input.

task: specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.

templates: format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.

Explanation about LoadHFΒΆ

Loads datasets from the HuggingFace Hub.

It supports loading with or without streaming, and it can filter datasets upon loading.

Args:

path: The path or identifier of the dataset on the HuggingFace Hub. name: An optional dataset name. data_dir: Optional directory to store downloaded data. split: Optional specification of which split to load. data_files: Optional specification of particular data files to load. revision: Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version. streaming: Bool indicating if streaming should be used. filtering_lambda: A lambda function for filtering the data after loading. num_proc: Optional integer to specify the number of processes to use for parallel dataset loading.

Example:

Loading glue’s mrpc dataset

load_hf = LoadHF(path='glue', name='mrpc')

Explanation about InputOutputTemplateΒΆ

Generate field β€˜source’ from fields designated as input, and fields β€˜target’ and β€˜references’ from fields designated as output, of the processed instance.

Args specify the formatting strings with which to glue together the input and reference fields of the processed instance into one string (β€˜source’ and β€˜target’), and into a list of strings (β€˜references’).

Explanation about FilterByConditionΒΆ

Filters a stream, yielding only instances in which the values in required fields follow the required condition operator.

Raises an error if a required field name is missing from the input instance.

Args:

values (Dict[str, Any]): Field names and respective Values that instances must match according the condition, to be included in the output. condition: the name of the desired condition operator between the specified (sub) field’s value and the provided constant value. Supported conditions are (β€œgt”, β€œge”, β€œlt”, β€œle”, β€œne”, β€œeq”, β€œin”,”not in”) error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True.

Examples:

FilterByCondition(values = {β€œa”:4}, condition = β€œgt”) will yield only instances where field β€œa” contains a value > 4 FilterByCondition(values = {β€œa”:4}, condition = β€œle”) will yield only instances where β€œa”<=4 FilterByCondition(values = {β€œa”:[4,8]}, condition = β€œin”) will yield only instances where β€œa” is 4 or 8 FilterByCondition(values = {β€œa”:[4,8]}, condition = β€œnot in”) will yield only instances where β€œa” different from 4 or 8 FilterByCondition(values = {β€œa/b”:[4,8]}, condition = β€œnot in”) will yield only instances where β€œa” is

a dict in which key β€œb” is mapped to a value that is neither 4 nor 8

FilterByCondition(values = {β€œa[2]”:4}, condition = β€œle”) will yield only instances where β€œa” is a list whose 3-rd

element is <= 4

Explanation about SetΒΆ

Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them.

Args:
fields (Dict[str, object]): The fields to add to each instance.

Use β€˜/’ to access inner fields

use_deepcopy (bool) : Deep copy the input value to avoid later modifications

Examples:

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to all streams Set(fields={β€œclasses”: [β€œpositive”,”negatives”]})

# Add a β€˜start’ field under the β€˜span’ field with a value of 0 to all streams Set(fields={β€œspan/start”: 0}

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to β€˜train’ stream Set(fields={β€œclasses”: [β€œpositive”,”negatives”], apply_to_stream=[β€œtrain”]})

# Add a β€˜classes’ field on a given list, prevent modification of original list # from changing the instance. Set(fields={β€œclasses”: alist}), use_deepcopy=True) # if now alist is modified, still the instances remain intact.

Explanation about RenameΒΆ

Renames fields.

Move value from one field to another, potentially, if field name contains a /, from one branch into another. Remove the from field, potentially part of it in case of / in from_field.

Examples:

Rename(field_to_field={β€œb”: β€œc”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: 2}, {β€œa”: 2, β€œc”: 3}]

Rename(field_to_field={β€œb”: β€œc/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: {β€œd”: 2}}, {β€œa”: 2, β€œc”: {β€œd”: 3}}]

Rename(field_to_field={β€œb”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œb”: {β€œd”: 2}}, {β€œa”: 2, β€œb”: {β€œd”: 3}}]

Rename(field_to_field={β€œb/c/e”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: {β€œc”: {β€œe”: 2, β€œf”: 20}}}] to [{β€œa”: 1, β€œb”: {β€œc”: {β€œf”: 20}, β€œd”: 2}}]

Explanation about TaskΒΆ

Task packs the different instance fields into dictionaries by their roles in the task.

Attributes:
input_fields (Union[Dict[str, str], List[str]]):

Dictionary with string names of instance input fields and types of respective values. In case a list is passed, each type will be assumed to be Any.

reference_fields (Union[Dict[str, str], List[str]]):

Dictionary with string names of instance output fields and types of respective values. In case a list is passed, each type will be assumed to be Any.

metrics (List[str]): List of names of metrics to be used in the task. prediction_type (Optional[str]):

Need to be consistent with all used metrics. Defaults to None, which means that it will be set to Any.

defaults (Optional[Dict[str, Any]]):

An optional dictionary with default values for chosen input/output keys. Needs to be consistent with names and types provided in β€˜input_fields’ and/or β€˜output_fields’ arguments. Will not overwrite values if already provided in a given instance.

The output instance contains three fields:

β€œinput_fields” whose value is a sub-dictionary of the input instance, consisting of all the fields listed in Arg β€˜input_fields’. β€œreference_fields” – for the fields listed in Arg β€œreference_fields”. β€œmetrics” – to contain the value of Arg β€˜metrics’

Explanation about ApplyΒΆ

A class used to apply a python function and store the result in a field.

Args:

function (str): name of function. to_field (str): the field to store the result any additional arguments are field names whose values will be passed directly to the function specified

Examples: Store in field β€œb” the uppercase string of the value in field β€œa” Apply(β€œa”, function=str.upper, to_field=”b”)

Dump the json representation of field β€œt” and store back in the same field. Apply(β€œt”, function=json.dumps, to_field=”t”)

Set the time in a field β€˜b’. Apply(function=time.time, to_field=”b”)

References: processors.remove_punctuations, processors.remove_articles, processors.fix_whitespace, processors.lower_case, metrics.rouge

Read more about catalog usage here.