πŸ“„ Ethos BinaryΒΆ

ETHOS: online hate speecg detection dataset. This repository contains a dataset for hate speech detection on social media platforms, called Ethos. There are two variations of the dataset: Ethos_Dataset_Binary: contains 998 comments in the dataset alongside with a label about hate speech presence or absence. 565 of them do not contain hate speech, while the rest of them, 433, contain. Ethos_Dataset_Multi_Label: which contains 8 labels for the 433 comments with hate speech content. These labels are violence (if it incites (1) or not (0) violence), directed_vs_general (if it is directed to a person (1) or a group (0)), and 6 labels about the category of hate speech like, gender, race, national_origin, disability, religion and sexual_orientation.

Tags: annotations_creators:['crowdsourced', 'expert-generated'], arxiv:2006.08328, flags:['Hate Speech Detection'], language:en, language_creators:['found', 'other'], license:agpl-3.0, multilinguality:monolingual, region:us, size_categories:n<1K, source_datasets:original, task_categories:text-classification, task_ids:['multi-label-classification', 'sentiment-classification']

cards.ethos_binary

type: TaskCard
loader: 
  type: LoadHF
  path: ethos
  name: binary
preprocess_steps: 
  - type: Shuffle
    page_size: 1000000
  - type: SplitRandomMix
    mix: 
      train: train[20%]
      test: train[80%]
  - type: MapInstanceValues
    mappers: 
      label: 
        0: not hate speech
        1: hate speech
  - type: Set
    fields: 
      classes: 
        - not hate speech
        - hate speech
      text_type: sentence
      type_of_class: hate speech
task: tasks.classification.multi_class
templates: 
  - type: InputOutputTemplate
    input_format: Given this {text_type}: {text}. Classify if it contains {type_of_class}. classes: {classes}.
    output_format: {label}
    postprocessors: 
      - processors.take_first_non_empty_line
  - type: InputOutputTemplate
    input_format: Does the following {text_type} contains {type_of_class}? Answer only by choosing one of the options {classes}. {text_type}: {text}.
    output_format: {label}
    postprocessors: 
      - processors.take_first_non_empty_line
  - type: InputOutputTemplate
    input_format: Given this {text_type}: {text}. Classify if it contains {type_of_class}. classes: {classes}. I would classify this {text_type} as: 
    output_format: {label}
    postprocessors: 
      - processors.take_first_non_empty_line
      - processors.lower_case_till_punc
  - type: InputOutputTemplate
    input_format: Given this {text_type}: {text}. Classify if it contains {type_of_class}. classes: {classes}. I would classify this {text_type} as: 
    output_format: {label}
    postprocessors: 
      - processors.take_first_non_empty_line
      - processors.hate_speech_or_not_hate_speech
[source]

Explanation about TaskCardΒΆ

TaskCard delineates the phases in transforming the source dataset into model input, and specifies the metrics for evaluation of model output.

Attributes:

loader: specifies the source address and the loading operator that can access that source and transform it into a unitxt multistream.

preprocess_steps: list of unitxt operators to process the data source into model input.

task: specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.

templates: format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.

Explanation about SplitRandomMixΒΆ

Splits a multistream into new streams (splits), whose names, source input stream, and amount of instances, are specified by arg β€˜mix’.

The keys of arg β€˜mix’, are the names of the new streams, the values are of the form: β€˜name-of-source-stream[percentage-of-source-stream]’ Each input instance, of any input stream, is selected exactly once for inclusion in any of the output streams.

Examples: When processing a multistream made of two streams whose names are β€˜train’ and β€˜test’, by SplitRandomMix(mix = { β€œtrain”: β€œtrain[99%]”, β€œvalidation”: β€œtrain[1%]”, β€œtest”: β€œtest” }) the output is a multistream, whose three streams are named β€˜train’, β€˜validation’, and β€˜test’. Output stream β€˜train’ is made of randomly selected 99% of the instances of input stream β€˜train’, output stream β€˜validation’ is made of the remaining 1% instances of input β€˜train’, and output stream β€˜test’ is made of the whole of input stream β€˜test’.

When processing the above input multistream by SplitRandomMix(mix = { β€œtrain”: β€œtrain[50%]+test[0.1]”, β€œvalidation”: β€œtrain[50%]+test[0.2]”, β€œtest”: β€œtest[0.7]” }) the output is a multistream, whose three streams are named β€˜train’, β€˜validation’, and β€˜test’. Output stream β€˜train’ is made of randomly selected 50% of the instances of input stream β€˜train’ + randomly selected 0.1 (i.e., 10%) of the instances of input stream β€˜test’. Output stream β€˜validation’ is made of the remaining 50% instances of input β€˜train’+ randomly selected 0.2 (i.e., 20%) of the original instances of input β€˜test’, that were not selected for output β€˜train’, and output stream β€˜test’ is made of the remaining instances of input β€˜test’.

Explanation about LoadHFΒΆ

Loads datasets from the HuggingFace Hub.

It supports loading with or without streaming, and it can filter datasets upon loading.

Args:

path: The path or identifier of the dataset on the HuggingFace Hub. name: An optional dataset name. data_dir: Optional directory to store downloaded data. split: Optional specification of which split to load. data_files: Optional specification of particular data files to load. revision: Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version. streaming: Bool indicating if streaming should be used. filtering_lambda: A lambda function for filtering the data after loading. num_proc: Optional integer to specify the number of processes to use for parallel dataset loading.

Example:

Loading glue’s mrpc dataset

load_hf = LoadHF(path='glue', name='mrpc')

Explanation about InputOutputTemplateΒΆ

Generate field β€˜source’ from fields designated as input, and fields β€˜target’ and β€˜references’ from fields designated as output, of the processed instance.

Args specify the formatting strings with which to glue together the input and reference fields of the processed instance into one string (β€˜source’ and β€˜target’), and into a list of strings (β€˜references’).

Explanation about ShuffleΒΆ

Shuffles the order of instances in each page of a stream.

Args (of superclass):

page_size (int): The size of each page in the stream. Defaults to 1000.

Explanation about SetΒΆ

Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them.

Args:
fields (Dict[str, object]): The fields to add to each instance.

Use β€˜/’ to access inner fields

use_deepcopy (bool) : Deep copy the input value to avoid later modifications

Examples:

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to all streams Set(fields={β€œclasses”: [β€œpositive”,”negatives”]})

# Add a β€˜start’ field under the β€˜span’ field with a value of 0 to all streams Set(fields={β€œspan/start”: 0}

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to β€˜train’ stream Set(fields={β€œclasses”: [β€œpositive”,”negatives”], apply_to_stream=[β€œtrain”]})

# Add a β€˜classes’ field on a given list, prevent modification of original list # from changing the instance. Set(fields={β€œclasses”: alist}), use_deepcopy=True) # if now alist is modified, still the instances remain intact.

Explanation about MapInstanceValuesΒΆ

A class used to map instance values into other values.

This class is a type of InstanceOperator, it maps values of instances in a stream using predefined mappers.

Attributes:
mappers (Dict[str, Dict[str, Any]]): The mappers to use for mapping instance values.

Keys are the names of the fields to undergo mapping, and values are dictionaries that define the mapping from old values to new values.

strict (bool): If True, the mapping is applied strictly. That means if a value

does not exist in the mapper, it will raise a KeyError. If False, values that are not present in the mapper are kept as they are.

process_every_value (bool): If True, all fields to be mapped should be lists, and the mapping

is to be applied to their individual elements. If False, mapping is only applied to a field containing a single value.

Examples:

MapInstanceValues(mappers={β€œa”: {β€œ1”: β€œhi”, β€œ2”: β€œbye”}}) replaces β€˜1’ with β€˜hi’ and β€˜2’ with β€˜bye’ in field β€˜a’ in all instances of all streams: instance {β€œa”:”1”, β€œb”: 2} becomes {β€œa”:”hi”, β€œb”: 2}.

MapInstanceValues(mappers={β€œa”: {β€œ1”: β€œhi”, β€œ2”: β€œbye”}}, process_every_value=True) Assuming field β€˜a’ is a list of values, potentially including β€œ1”-s and β€œ2”-s, this replaces each such β€œ1” with β€œhi” and β€œ2” – with β€œbye” in all instances of all streams: instance {β€œa”: [β€œ1”, β€œ2”], β€œb”: 2} becomes {β€œa”: [β€œhi”, β€œbye”], β€œb”: 2}.

MapInstanceValues(mappers={β€œa”: {β€œ1”: β€œhi”, β€œ2”: β€œbye”}}, strict=True) To ensure that all values of field β€˜a’ are mapped in every instance, use strict=True. Input instance {β€œa”:”3”, β€œb”: 2} will raise an exception per the above call, because β€œ3” is not a key in the mapper of β€œa”.

MapInstanceValues(mappers={β€œa”: {str([1,2,3,4]): β€˜All’, str([]): β€˜None’}}, strict=True) replaces a list [1,2,3,4] with the string β€˜All’ and an empty list by string β€˜None’. Note that mapped values are defined by their string representation, so mapped values must be converted to strings.

References: processors.hate_speech_or_not_hate_speech, processors.take_first_non_empty_line, tasks.classification.multi_class, processors.lower_case_till_punc

Read more about catalog usage here.