πŸ“„ ScigenΒΆ

SciGen is a dataset for the task of reasoning-aware data-to-text generation. It consists of tables from scientific articles(mostly containing numerical values) and their corresponding text descriptions.

Tags: modality:table, urls:{'arxiv': 'https://arxiv.org/pdf/2104.08296'}, languages:['english']

cards.scigen

type: TaskCard
loader: 
  type: LoadHF
  path: kasnerz/scigen
  data_classification_policy: 
    - public
preprocess_steps: 
  - type: FilterByCondition
    values: 
      table_content_values: []
    condition: ne
  - type: ConstructTableFromRowsCols
    fields: 
      - table_column_names
      - table_content_values
    to_field: input_a
  - type: Rename
    field_to_field: 
      table_caption: input_b
      text: output
  - type: Set
    fields: 
      type_of_input_a: table
      type_of_input_b: caption
      type_of_output: text description
task: tasks.generation.from_pair[metrics=[metrics.llm_as_judge.rating.llama_3_70b_instruct_ibm_genai_template_table2text_single_turn_with_reference]]
templates: 
  - templates.generation.from_pair.default[postprocessors=[processors.lower_case]]
[source]

Explanation about TaskCardΒΆ

TaskCard delineates the phases in transforming the source dataset into model input, and specifies the metrics for evaluation of model output.

Attributes:

loader: specifies the source address and the loading operator that can access that source and transform it into a unitxt multistream.

preprocess_steps: list of unitxt operators to process the data source into model input.

task: specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.

templates: format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.

Explanation about LoadHFΒΆ

Loads datasets from the HuggingFace Hub.

It supports loading with or without streaming, and it can filter datasets upon loading.

Args:

path: The path or identifier of the dataset on the HuggingFace Hub. name: An optional dataset name. data_dir: Optional directory to store downloaded data. split: Optional specification of which split to load. data_files: Optional specification of particular data files to load. revision: Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version. streaming: Bool indicating if streaming should be used. filtering_lambda: A lambda function for filtering the data after loading. num_proc: Optional integer to specify the number of processes to use for parallel dataset loading.

Example:

Loading glue’s mrpc dataset

load_hf = LoadHF(path='glue', name='mrpc')

Explanation about FilterByConditionΒΆ

Filters a stream, yielding only instances in which the values in required fields follow the required condition operator.

Raises an error if a required field name is missing from the input instance.

Args:

values (Dict[str, Any]): Field names and respective Values that instances must match according the condition, to be included in the output. condition: the name of the desired condition operator between the specified (sub) field’s value and the provided constant value. Supported conditions are (β€œgt”, β€œge”, β€œlt”, β€œle”, β€œne”, β€œeq”, β€œin”,”not in”) error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True.

Examples:

FilterByCondition(values = {β€œa”:4}, condition = β€œgt”) will yield only instances where field β€œa” contains a value > 4 FilterByCondition(values = {β€œa”:4}, condition = β€œle”) will yield only instances where β€œa”<=4 FilterByCondition(values = {β€œa”:[4,8]}, condition = β€œin”) will yield only instances where β€œa” is 4 or 8 FilterByCondition(values = {β€œa”:[4,8]}, condition = β€œnot in”) will yield only instances where β€œa” different from 4 or 8 FilterByCondition(values = {β€œa/b”:[4,8]}, condition = β€œnot in”) will yield only instances where β€œa” is

a dict in which key β€œb” is mapped to a value that is neither 4 nor 8

FilterByCondition(values = {β€œa[2]”:4}, condition = β€œle”) will yield only instances where β€œa” is a list whose 3-rd

element is <= 4

Explanation about SetΒΆ

Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them.

Args:
fields (Dict[str, object]): The fields to add to each instance.

Use β€˜/’ to access inner fields

use_deepcopy (bool) : Deep copy the input value to avoid later modifications

Examples:

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to all streams Set(fields={β€œclasses”: [β€œpositive”,”negatives”]})

# Add a β€˜start’ field under the β€˜span’ field with a value of 0 to all streams Set(fields={β€œspan/start”: 0}

# Add a β€˜classes’ field with a value of a list β€œpositive” and β€œnegative” to β€˜train’ stream Set(fields={β€œclasses”: [β€œpositive”,”negatives”], apply_to_stream=[β€œtrain”]})

# Add a β€˜classes’ field on a given list, prevent modification of original list # from changing the instance. Set(fields={β€œclasses”: alist}), use_deepcopy=True) # if now alist is modified, still the instances remain intact.

Explanation about RenameΒΆ

Renames fields.

Move value from one field to another, potentially, if field name contains a /, from one branch into another. Remove the from field, potentially part of it in case of / in from_field.

Examples:

Rename(field_to_field={β€œb”: β€œc”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: 2}, {β€œa”: 2, β€œc”: 3}]

Rename(field_to_field={β€œb”: β€œc/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: {β€œd”: 2}}, {β€œa”: 2, β€œc”: {β€œd”: 3}}]

Rename(field_to_field={β€œb”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œb”: {β€œd”: 2}}, {β€œa”: 2, β€œb”: {β€œd”: 3}}]

Rename(field_to_field={β€œb/c/e”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: {β€œc”: {β€œe”: 2, β€œf”: 20}}}] to [{β€œa”: 1, β€œb”: {β€œc”: {β€œf”: 20}, β€œd”: 2}}]

Explanation about ConstructTableFromRowsColsΒΆ

Maps column and row field into single table field encompassing both header and rows.

field[0] = header string as List field[1] = rows string as List[List] field[2] = table caption string(optional)

References: metrics.llm_as_judge.rating.llama_3_70b_instruct_ibm_genai_template_table2text_single_turn_with_reference, templates.generation.from_pair.default, tasks.generation.from_pair, processors.lower_case

Read more about catalog usage here.