πŸ“„ WebsrcΒΆ

WebSRC v1.0 is a dataset for reading comprehension on structural web pages. The task is to answer questions about web pages, which requires a system to have a comprehensive understanding of the spatial structure and logical structure. WebSRC consists of 6.4K web pages and 400K question-answer pairs about web pages. This cached copy of the dataset is focused on Q&A using the web screenshots (HTML and other metadata are omitted). Questions in WebSRC were created for each segment. Answers are either text spans from web pages or yes/no.

Tags: license:Unknown, multilinguality:monolingual, modalities:['image', 'text'], size_categories:10K<n<100K, task_categories:question-answering, task_ids:extractive-qa, category:dataset

cards.websrc

TaskCard(
    loader=LoadHF(
        path="rootsautomation/websrc",
        streaming=True,
    ),
    preprocess_steps=[
        Shuffle(),
        RenameSplits(
            mapper={
                "train": "train",
                "dev": "test",
            },
        ),
        "splitters.small_no_dev",
        Wrap(
            field="answer",
            inside="list",
            to_field="answers",
        ),
        DecodeImage(
            field="image",
            to_field="context",
        ),
        ToImage(
            field="context",
        ),
        Set(
            fields={
                "context_type": "image",
            },
        ),
    ],
    task="tasks.qa.with_context.with_domain[metrics=[metrics.websrc_squad_f1]]",
    templates=[
        "templates.qa.with_context.websrc",
        "templates.qa.with_context",
        "templates.qa.extractive",
        "templates.qa.with_context.simple",
        "templates.qa.with_context.simple2",
        "templates.qa.with_context.with_type",
        "templates.qa.with_context.question_first",
        "templates.qa.with_context.ffqa",
        "templates.qa.with_context.title",
        "templates.qa.with_context.lmms_eval",
    ],
)
[source]

from unitxt.collections_operators import Wrap
from unitxt.image_operators import DecodeImage, ToImage
from unitxt.loaders import LoadHF
from unitxt.operators import Set, Shuffle
from unitxt.splitters import RenameSplits

Explanation about TaskCardΒΆ

TaskCard delineates the phases in transforming the source dataset into model input, and specifies the metrics for evaluation of model output.

Args:
loader:

specifies the source address and the loading operator that can access that source and transform it into a unitxt multistream.

preprocess_steps:

list of unitxt operators to process the data source into model input.

task:

specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.

templates:

format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.

Explanation about LoadHFΒΆ

Loads datasets from the HuggingFace Hub.

It supports loading with or without streaming, and it can filter datasets upon loading.

Args:
path:

The path or identifier of the dataset on the HuggingFace Hub.

name:

An optional dataset name.

data_dir:

Optional directory to store downloaded data.

split:

Optional specification of which split to load.

data_files:

Optional specification of particular data files to load. When you provide a list of data_files to Hugging Face’s load_dataset function without explicitly specifying the split argument, these files are automatically placed into the train split.

revision:

Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version.

streaming (bool):

indicating if streaming should be used.

filtering_lambda (str, optional):

A lambda function for filtering the data after loading.

num_proc (int, optional):

Specifies the number of processes to use for parallel dataset loading.

Example:

Loading glue’s mrpc dataset

load_hf = LoadHF(path='glue', name='mrpc')

Explanation about SetΒΆ

Sets specified fields in each instance, in a given stream or all streams (default), with specified values. If fields exist, updates them, if do not exist – adds them.

Args:

fields (Dict[str, object]): The fields to add to each instance. Use β€˜/’ to access inner fields

use_deepcopy (bool) : Deep copy the input value to avoid later modifications

Examples:

# Set a value of a list consisting of β€œpositive” and β€œnegative” do field β€œclasses” to each and every instance of all streams Set(fields={"classes": ["positive","negatives"]})

# In each and every instance of all streams, field β€œspan” is to become a dictionary containing a field β€œstart”, in which the value 0 is to be set Set(fields={"span/start": 0}

# In all instances of stream β€œtrain” only, Set field β€œclasses” to have the value of a list consisting of β€œpositive” and β€œnegative” Set(fields={"classes": ["positive","negatives"], apply_to_stream=["train"]})

# Set field β€œclasses” to have the value of a given list, preventing modification of original list from changing the instance. Set(fields={"classes": alist}), use_deepcopy=True) if now alist is modified, still the instances remain intact.

Explanation about ShuffleΒΆ

Shuffles the order of instances in each page of a stream.

Args (of superclass):

page_size (int): The size of each page in the stream. Defaults to 1000.

References: templates.qa.with_context.question_first, templates.qa.with_context.lmms_eval, templates.qa.with_context.with_type, tasks.qa.with_context.with_domain, templates.qa.with_context.simple2, templates.qa.with_context.websrc, templates.qa.with_context.simple, templates.qa.with_context.title, templates.qa.with_context.ffqa, templates.qa.with_context, templates.qa.extractive, metrics.websrc_squad_f1, splitters.small_no_dev

Read more about catalog usage here.