πŸ“„ ToxigenΒΆ

This dataset is for implicit hate speech detection. All instances were generated using GPT-3 and the methods described in our paper. Languages All text is written in English. Dataset Structure Data Fields We release TOXIGEN as a dataframe with the following fields: prompt is the prompt used for… See the full description on the dataset page: https://huggingface.co/datasets/toxigen/toxigen-data.

cards.toxigen

TaskCard(
    loader=LoadHF(
        path="skg/toxigen-data",
        name="train",
    ),
    preprocess_steps=[
        Shuffle(
            page_size=251000,
        ),
        SplitRandomMix(
            mix={
                "train": "train[20%]",
                "test": "train[80%]",
            },
        ),
        MapInstanceValues(
            mappers={
                "prompt_label": {
                    "0": "not toxic",
                    "1": "toxic",
                },
            },
        ),
        Rename(
            field_to_field={
                "prompt": "text",
            },
        ),
        Rename(
            field_to_field={
                "prompt_label": "label",
            },
        ),
        Set(
            fields={
                "classes": [
                    "not toxic",
                    "toxic",
                ],
                "type_of_class": "toxicity",
            },
        ),
    ],
    task="tasks.classification.multi_class",
    templates=[
        InputOutputTemplate(
            input_format="Given this {text_type}: {text}. Classify if it contains {type_of_class}. classes: {classes}. I would classify this {text_type} as: ",
            output_format="{label}",
            postprocessors=[
                "processors.take_first_non_empty_line",
                "processors.toxic_or_not_toxic",
            ],
        ),
    ],
)
[source]

from unitxt.loaders import LoadHF
from unitxt.operators import MapInstanceValues, Rename, Set, Shuffle
from unitxt.splitters import SplitRandomMix
from unitxt.templates import InputOutputTemplate

Explanation about TaskCardΒΆ

TaskCard delineates the phases in transforming the source dataset into model input, and specifies the metrics for evaluation of model output.

Args:
loader:

specifies the source address and the loading operator that can access that source and transform it into a unitxt multistream.

preprocess_steps:

list of unitxt operators to process the data source into model input.

task:

specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.

templates:

format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.

Explanation about MapInstanceValuesΒΆ

A class used to map instance values into other values.

This class is a type of InstanceOperator, it maps values of instances in a stream using predefined mappers.

Args:
mappers (Dict[str, Dict[str, Any]]):

The mappers to use for mapping instance values. Keys are the names of the fields to undergo mapping, and values are dictionaries that define the mapping from old values to new values. Note that mapped values are defined by their string representation, so mapped values are converted to strings before being looked up in the mappers.

strict (bool):

If True, the mapping is applied strictly. That means if a value does not exist in the mapper, it will raise a KeyError. If False, values that are not present in the mapper are kept as they are.

process_every_value (bool):

If True, all fields to be mapped should be lists, and the mapping is to be applied to their individual elements. If False, mapping is only applied to a field containing a single value.

Examples:

MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}) replaces "1" with "hi" and "2" with "bye" in field "a" in all instances of all streams: instance {"a": 1, "b": 2} becomes {"a": "hi", "b": 2}. Note that the value of "b" remained intact, since field-name "b" does not participate in the mappers, and that 1 was casted to "1" before looked up in the mapper of "a".

MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, process_every_value=True): Assuming field "a" is a list of values, potentially including "1"-s and "2"-s, this replaces each such "1" with "hi" and "2" – with "bye" in all instances of all streams: instance {"a": ["1", "2"], "b": 2} becomes {"a": ["hi", "bye"], "b": 2}.

MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, strict=True): To ensure that all values of field "a" are mapped in every instance, use strict=True. Input instance {"a":"3", "b": 2} will raise an exception per the above call, because "3" is not a key in the mapper of "a".

MapInstanceValues(mappers={"a": {str([1,2,3,4]): "All", str([]): "None"}}, strict=True) replaces a list [1,2,3,4] with the string "All" and an empty list by string "None".

Explanation about LoadHFΒΆ

Loads datasets from the HuggingFace Hub.

It supports loading with or without streaming, and it can filter datasets upon loading.

Args:
path:

The path or identifier of the dataset on the HuggingFace Hub.

name:

An optional dataset name.

data_dir:

Optional directory to store downloaded data.

split:

Optional specification of which split to load.

data_files:

Optional specification of particular data files to load. When you provide a list of data_files to Hugging Face’s load_dataset function without explicitly specifying the split argument, these files are automatically placed into the train split.

revision:

Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version.

streaming (bool):

indicating if streaming should be used.

filtering_lambda (str, optional):

A lambda function for filtering the data after loading.

num_proc (int, optional):

Specifies the number of processes to use for parallel dataset loading.

Example:

Loading glue’s mrpc dataset

load_hf = LoadHF(path='glue', name='mrpc')

Explanation about SetΒΆ

Sets specified fields in each instance, in a given stream or all streams (default), with specified values. If fields exist, updates them, if do not exist – adds them.

Args:

fields (Dict[str, object]): The fields to add to each instance. Use β€˜/’ to access inner fields

use_deepcopy (bool) : Deep copy the input value to avoid later modifications

Examples:

# Set a value of a list consisting of β€œpositive” and β€œnegative” do field β€œclasses” to each and every instance of all streams Set(fields={"classes": ["positive","negatives"]})

# In each and every instance of all streams, field β€œspan” is to become a dictionary containing a field β€œstart”, in which the value 0 is to be set Set(fields={"span/start": 0}

# In all instances of stream β€œtrain” only, Set field β€œclasses” to have the value of a list consisting of β€œpositive” and β€œnegative” Set(fields={"classes": ["positive","negatives"], apply_to_stream=["train"]})

# Set field β€œclasses” to have the value of a given list, preventing modification of original list from changing the instance. Set(fields={"classes": alist}), use_deepcopy=True) if now alist is modified, still the instances remain intact.

Explanation about ShuffleΒΆ

Shuffles the order of instances in each page of a stream.

Args (of superclass):

page_size (int): The size of each page in the stream. Defaults to 1000.

Explanation about InputOutputTemplateΒΆ

Generate field β€˜source’ from fields designated as input, and fields β€˜target’ and β€˜references’ from fields designated as output, of the processed instance.

Args specify the formatting strings with which to glue together the input and reference fields of the processed instance into one string (β€˜source’ and β€˜target’), and into a list of strings (β€˜references’).

Explanation about RenameΒΆ

Renames fields.

Move value from one field to another, potentially, if field name contains a /, from one branch into another. Remove the from field, potentially part of it in case of / in from_field.

Examples:

Rename(field_to_field={β€œb”: β€œc”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: 2}, {β€œa”: 2, β€œc”: 3}]

Rename(field_to_field={β€œb”: β€œc/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: {β€œd”: 2}}, {β€œa”: 2, β€œc”: {β€œd”: 3}}]

Rename(field_to_field={β€œb”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œb”: {β€œd”: 2}}, {β€œa”: 2, β€œb”: {β€œd”: 3}}]

Rename(field_to_field={β€œb/c/e”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: {β€œc”: {β€œe”: 2, β€œf”: 20}}}] to [{β€œa”: 1, β€œb”: {β€œc”: {β€œf”: 20}, β€œd”: 2}}]

Explanation about SplitRandomMixΒΆ

Splits a multistream into new streams (splits), whose names, source input stream, and amount of instances, are specified by arg β€˜mix’.

The keys of arg β€˜mix’, are the names of the new streams, the values are of the form: β€˜name-of-source-stream[percentage-of-source-stream]’ Each input instance, of any input stream, is selected exactly once for inclusion in any of the output streams.

Examples: When processing a multistream made of two streams whose names are β€˜train’ and β€˜test’, by SplitRandomMix(mix = { β€œtrain”: β€œtrain[99%]”, β€œvalidation”: β€œtrain[1%]”, β€œtest”: β€œtest” }) the output is a multistream, whose three streams are named β€˜train’, β€˜validation’, and β€˜test’. Output stream β€˜train’ is made of randomly selected 99% of the instances of input stream β€˜train’, output stream β€˜validation’ is made of the remaining 1% instances of input β€˜train’, and output stream β€˜test’ is made of the whole of input stream β€˜test’.

When processing the above input multistream by SplitRandomMix(mix = { β€œtrain”: β€œtrain[50%]+test[0.1]”, β€œvalidation”: β€œtrain[50%]+test[0.2]”, β€œtest”: β€œtest[0.7]” }) the output is a multistream, whose three streams are named β€˜train’, β€˜validation’, and β€˜test’. Output stream β€˜train’ is made of randomly selected 50% of the instances of input stream β€˜train’ + randomly selected 0.1 (i.e., 10%) of the instances of input stream β€˜test’. Output stream β€˜validation’ is made of the remaining 50% instances of input β€˜train’+ randomly selected 0.2 (i.e., 20%) of the original instances of input β€˜test’, that were not selected for output β€˜train’, and output stream β€˜test’ is made of the remaining instances of input β€˜test’.

References: processors.take_first_non_empty_line, tasks.classification.multi_class, processors.toxic_or_not_toxic

Read more about catalog usage here.