πŸ“„ DartΒΆ

DART is a large and open-domain structured DAta Record to Text generation corpus with high-quality sentence annotations with each input being a set of entity-relation triples following a tree-structured ontology. It consists of 82191 examples across different domains with each input being a semantic RDF triple set derived from data records in tables and the tree ontology of table schema, annotated with sentence description that covers all facts in the triple set. DART is released in the following paper where you can find more details and baseline results: https://arxiv.org/abs/2007.02871

Tags: annotations_creators:['crowdsourced', 'machine-generated'], arxiv:2007.02871, language:en, language_creators:['crowdsourced', 'machine-generated'], license:mit, multilinguality:monolingual, region:us, size_categories:10K<n<100K, source_datasets:['extended|wikitable_questions', 'extended|wikisql', 'extended|web_nlg', 'extended|cleaned_e2e'], task_categories:tabular-to-text, task_ids:rdf-to-text, category:dataset

cards.dart

TaskCard(
    loader=LoadHF(
        path="dart",
    ),
    preprocess_steps=[
        "splitters.small_no_test",
        SerializeTriples(
            field_to_field=[
                [
                "tripleset",
                "serialized_triples",
                ],
            ],
        ),
        Rename(
            field_to_field={
                "serialized_triples": "input",
            },
        ),
        Copy(
            field="annotations/text/0",
            to_field="output",
        ),
        Set(
            fields={
                "type_of_input": "Triples",
            },
        ),
    ],
    task="tasks.generation",
    templates="templates.generation.all",
)
[source]

from unitxt.loaders import LoadHF
from unitxt.operators import Copy, Rename, Set
from unitxt.struct_data_operators import SerializeTriples

Explanation about TaskCardΒΆ

TaskCard delineates the phases in transforming the source dataset into model input, and specifies the metrics for evaluation of model output.

Args:
loader:

specifies the source address and the loading operator that can access that source and transform it into a unitxt multistream.

preprocess_steps:

list of unitxt operators to process the data source into model input.

task:

specifies the fields (of the already (pre)processed instance) making the inputs, the fields making the outputs, and the metrics to be used for evaluating the model output.

templates:

format strings to be applied on the input fields (specified by the task) and the output fields. The template also carries the instructions and the list of postprocessing steps, to be applied to the model output.

Explanation about CopyΒΆ

Copies values from specified fields to specified fields.

Args (of parent class):

field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields.

Examples:

An input instance {β€œa”: 2, β€œb”: 3}, when processed by Copy(field_to_field={"a": "b"}) would yield {β€œa”: 2, β€œb”: 2}, and when processed by Copy(field_to_field={"a": "c"}) would yield {β€œa”: 2, β€œb”: 3, β€œc”: 2}

with field names containing / , we can also copy inside the field: Copy(field="a/0",to_field="a") would process instance {β€œa”: [1, 3]} into {β€œa”: 1}

Explanation about LoadHFΒΆ

Loads datasets from the HuggingFace Hub.

It supports loading with or without streaming, and it can filter datasets upon loading.

Args:
path:

The path or identifier of the dataset on the HuggingFace Hub.

name:

An optional dataset name.

data_dir:

Optional directory to store downloaded data.

split:

Optional specification of which split to load.

data_files:

Optional specification of particular data files to load. When you provide a list of data_files to Hugging Face’s load_dataset function without explicitly specifying the split argument, these files are automatically placed into the train split.

revision:

Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version.

streaming (bool):

indicating if streaming should be used.

filtering_lambda (str, optional):

A lambda function for filtering the data after loading.

num_proc (int, optional):

Specifies the number of processes to use for parallel dataset loading.

Example:

Loading glue’s mrpc dataset

load_hf = LoadHF(path='glue', name='mrpc')

Explanation about SetΒΆ

Sets specified fields in each instance, in a given stream or all streams (default), with specified values. If fields exist, updates them, if do not exist – adds them.

Args:

fields (Dict[str, object]): The fields to add to each instance. Use β€˜/’ to access inner fields

use_deepcopy (bool) : Deep copy the input value to avoid later modifications

Examples:

# Set a value of a list consisting of β€œpositive” and β€œnegative” do field β€œclasses” to each and every instance of all streams Set(fields={"classes": ["positive","negatives"]})

# In each and every instance of all streams, field β€œspan” is to become a dictionary containing a field β€œstart”, in which the value 0 is to be set Set(fields={"span/start": 0}

# In all instances of stream β€œtrain” only, Set field β€œclasses” to have the value of a list consisting of β€œpositive” and β€œnegative” Set(fields={"classes": ["positive","negatives"], apply_to_stream=["train"]})

# Set field β€œclasses” to have the value of a given list, preventing modification of original list from changing the instance. Set(fields={"classes": alist}), use_deepcopy=True) if now alist is modified, still the instances remain intact.

Explanation about SerializeTriplesΒΆ

Serializes triples into a flat sequence.

Sample input in expected format: [[ β€œFirst Clearing”, β€œLOCATION”, β€œOn NYS 52 1 Mi. Youngsville” ], [ β€œOn NYS 52 1 Mi. Youngsville”, β€œCITY_OR_TOWN”, β€œCallicoon, New York”]]

Sample output: First Clearing : LOCATION : On NYS 52 1 Mi. Youngsville | On NYS 52 1 Mi. Youngsville : CITY_OR_TOWN : Callicoon, New York

Explanation about RenameΒΆ

Renames fields.

Move value from one field to another, potentially, if field name contains a /, from one branch into another. Remove the from field, potentially part of it in case of / in from_field.

Examples:

Rename(field_to_field={β€œb”: β€œc”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: 2}, {β€œa”: 2, β€œc”: 3}]

Rename(field_to_field={β€œb”: β€œc/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œc”: {β€œd”: 2}}, {β€œa”: 2, β€œc”: {β€œd”: 3}}]

Rename(field_to_field={β€œb”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: 2}, {β€œa”: 2, β€œb”: 3}] to [{β€œa”: 1, β€œb”: {β€œd”: 2}}, {β€œa”: 2, β€œb”: {β€œd”: 3}}]

Rename(field_to_field={β€œb/c/e”: β€œb/d”}) will change inputs [{β€œa”: 1, β€œb”: {β€œc”: {β€œe”: 2, β€œf”: 20}}}] to [{β€œa”: 1, β€œb”: {β€œc”: {β€œf”: 20}, β€œd”: 2}}]

References: templates.generation.all, splitters.small_no_test, tasks.generation

Read more about catalog usage here.